
Building an IT Security Laboratory for Complex
Teaching Scenarios Using ‘Infrastructure as Code’

Marcus Soll; Hendrik Helmken; Michel Belde; Sebastian Schimpfhauser; Felix Nguyen;
Daniel Versick

2023 IEEE Global Engineering Education Conference (EDUCON), 2023

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

in other works.

IEEE Xplore: https://ieeexplore.ieee.org/document/10125250

DOI: 10.1109/EDUCON54358.2023.10125250

https://doi.org/10.1109/EDUCON54358.2023.10125250
https://ieeexplore.ieee.org/document/10125250

Building an IT Security Laboratory for Complex
Teaching Scenarios Using ’Infrastructure as Code’

Marcus Soll, Hendrik Helmken, Michel Belde, Sebastian Schimpfhauser, Felix Nguyen, Daniel Versick
NORDAKADEMIE gAG Hochschule der Wirtschaft

Elmshorn, Germany
{marcus.soll,daniel.versick}@nordakademie.de felix.nguyen@lhind.dlh.de

Abstract—There are increasing demands for IT security edu-
cation which could be partly met by easier access to IT security
laboratories. This paper proposes the use of ’Infrastructure as
Code’ (IaC) as a central building block for introducing dynami-
cally adaptable teaching scenarios to laboratories in the context
of IT security. The decision was made based on our didactical
concept (which is built on Bloom’s Taxonomy). The concept we
propose is intended for use in a virtual laboratory, where the
whole laboratory set-up is distributed over and contained within
virtual machines. This way, we are able to build realistic, complex
teaching scenarios. After comparing multiple IaC solutions, we
decided to build our implementation on Terraform. The most
important building blocks written in Terraform are presented.
In addition, a user interface was created to meet demands
of students and teachers. We will describe example teaching
scenarios including one where students are tasked with gaining
access to vulnerable data via a 2-step attack.

Index Terms—Computer science education, educational tech-
nology, infrastructure as code, penetration testing, Terraform

I. INTRODUCTION

If we look at the latest curriculum guidelines, the focus
of IT security in university education is mainly on the theo-
retical side. In the guideline of the German Gesellschaft für
Informatik [1], the usage of practical tools1 is only considered
for low contextualisation. Complex scenarios should only be
analysed, which is often considered a more theoretical task.
The guidelines of the ACM and IEEE for undergraduate
degree programmes for computer science [2] only suggest
analysing typical security problems, but do not suggest the
usage of security related software tools, such as penetration
tools or intrusion detection systems. The specialised guideline
for cybersecurity curricula [3] mentions that the knowledge
and usage of practical tools is beneficial, but the defined
learning outcomes are written in a way that the preferred
method of teaching (theoretical or practical) is not defined
and therefore up to the teacher.

This situation is not optimal. Practical training in laborato-
ries and hands-on experience can improve the overall domain-
knowledge of students [4]. In addition, important learning

This research was part of the project Flexibel kombinierbare Cross-Reality
Labore in der Hochschullehre: zukunftsfähige Kompetenzentwicklung für
ein Lernen und Arbeiten 4.0 (CrossLab), which is funded by the Stiftung
Innovation in der Hochschullehre, Germany.

1German: ’typischen Angriffsmethoden und Werkzeuge benutzen’ [1, p. 27],
the English translation would be close to ’usage of usual tools for penetration
testing’

outcomes can be trained such as instrumentation, experiment,
learn from failure, creativity [5] or knowledge over industry
context, working mindset or getting an overview over larger
contexts [6]. Thus, giving the students laboratories for IT
security to experiment in seems beneficial.

How can such a laboratory for IT security look like?
In general, exercises in IT security can be table-top based
(e.g. a discussion about a scenario) or full simulation (e.g.
artificial systems like virtual computers and networks) [7]. For
a full-fledged IT security laboratory, we imagine having a full
simulation spanning at least one (if possible multiple) virtual
systems where students can practise different exercises like
analysing a computer for security vulnerabilities or analysing
network traffic to identify attackers.

If we look a bit further, such a laboratory should also pre-
pare for current challenges. One such challenge is operational
security [8]: With the rise of Industry 4.0 and Internet of
Things, more and more operational technology is connected
to networks thus open up new cyber security threads. One
famous example of such a security thread is the Stuxnet
virus, which was used around 2010 to sabotage physical
production systems in the form of Iranian uranium centrifuges
[9]. Future laboratories should thus be able to include exercises
for operational security.

To strengthen the position of practical knowledge in IT
security, we suggest to increase the availability of IT security
laboratories at universities. These laboratories should be low
cost and easily deployable, which would make it easier for
universities to adopt them. Since cloud-based virtual labora-
tories can be easy to access globally and allow maximisation
of resources [10], we want to explore this route by levering
the advantages of modern ’Infrastructure as Code’ technology
[11].

II. IT SECURITY LABS IN TEACHING

Laboratories for IT security are not a new development.
A good overview over the different types of IT security
laboratories can be found in Topham et al. [10]. However,
we can also look at more recent research on laboratories for
IT security, where we can see multiple research paths: The
creation of new laboratory types (e.g. personalised learning
[12] or new domains like Android security [13]), embedding
cybersecurity into different other programmes (e.g. social
science [14], liberal arts [15] or even K-12 education [16]),

and laboratory technology [17]–[19]. In our work, we want to
follow the last-mentioned path.

There are already multiple (commercial) systems which
allow to practise IT security in a virtualised environment,
such as HackTheBox2, TryHackMe3 or Root-Me4. All of
these services allow accesss to learning / practising scenarios
containing one or multiple virtual machines while also con-
taining gamification elements [20]. While we do not include
gamification in our current laboratory systems, we want to
provide similar learning scenarios to students. We believe
that presenting the technology of our system enables other
institutions to employ similar laboratories and thus increases
the quality of IT security education. In future development,
we want to include topics like operational security in our
scenarios.

III. DIDACTICAL CONCEPT

While designing the laboratory, one important aspect was
the didactical concept behind it. Thereby, we can build a
system which enables students to learn all learning outcomes
designed in different courses for different degrees. We believe
that this is important even before developing an actual course,
since courses can only have a good didactical concept if
the laboratory enables it. Therefore, we want to present the
didactical concept we have in mind even when no full course
is developed yet.

We follow the general trend in the Bologna Process in the
European Union and describe the goals of our courses through
learning outcomes / competencies [21]. According to Kennedy
[21], a learning outcome is a description of what a student can
achieve, which must be demonstrable by the students. Learning
outcomes are based on Bloom’s Taxonomy (see the revised
version at [22]). Basically, you can sort learning activities from
easy to hard in the following order [22]:

• Remember
• Understand
• Apply
• Analyse
• Evaluate
• Create

In our case, the first two levels (remember and understand) can
also be addressed in a classical lecture. Thus, it is important
that our laboratory system is able to address levels higher than
apply of Bloom’s Taxonomy. This has a few consequences for
the design of our system:

1) We need a system that allows us to build scenarios
of different sizes, ranging from single machine set-
ups to scenarios spanning multiple networks and
machines. This allows us to both build small scenarios
for exercising with IT security tools (analyse) as well as
building realistic scenarios for practising evaluation of

2https://www.hackthebox.com/
3https://tryhackme.com/
4https://www.root-me.org/

scenarios as well as securing those scenarios (i.e. create
in Bloom’s Taxonomy).

2) We want a system that students can experiment in
without the fear of breaking something. Some studies
suggest that anxiety in laboratories might be a problem
for students [23], [24]. By reducing anxiety, students can
have the freedom to analyse, evaluate and create and thus
have the opportunity to achieve those learning outcomes
more easily.

3) Both teaching and learning of all levels of Bloom’s
Taxonomy should be encouraged. This enables students
to gain deep knowledge of IT security.

4) Support students with different learning speeds: While
students have different learning speeds, it is important that
they master the required skills instead of going through
assignments as quickly as possible [25]. It is therefore
important that our laboratory system supports students of
different learning speeds to achieve the desired learning
outcomes.

5) Support exercises for operational security. As written
in Sec. I, the security of operational technology is an
important upcoming topic [8], thus new IT security lab-
oratories should support them. While this is not a direct
consequence of Bloom’s Taxonomy, we still think it is
important enough to be included in our requirements.

Thus, using IaC for an IT security laboratory seems to be a
way to build laboratories with a sound didactical concept.

IV. CHOOSING AN ’INFRASTRUCTURE AS CODE’
SOLUTION

Since ’Infrastructure as Code’ (IaC) is an emerging trend
in cloud-computing [11], we want to analyse whether IaC
is feasible to be used for the construction of IT security
laboratories. Infrastructure as Code is defined as a way of
computer infrastructure automation which follows the practises
of software development (i.e. the infrastructure definition is
written as code, every change of code reflects a change in
infrastructure) [26].

For our laboratory system, we want a system that
1) is not dependent on a single cloud provider
2) has a state management (calling the same configuration

multiple times is idempotent)
3) uses a declarative configuration language (that can be

added to a source code repository)
4) is available as open source

There are multiple solutions we can use as an IaC provider.
Based on the popularity taken from [27], if we want at least a
10% usage we have 9 solutions. The results of our comparison
can be seen in Tab. I. The comparison shows that three systems
fulfil our requirements: Terraform, Chef and Puppet. Out of
those three, we chose Terraform [28] as the foundation of
our laboratory. Since we use Microsoft Azure5 for different
parts of the infrastructure of our university, we decided to use
Microsoft Azure as the cloud provider for our laboratory.

5https://azure.microsoft.com/

TABLE I
COMPARISON OF POPULAR IAC SOLUTIONS. THE SOLUTIONS ARE

COMPARED WHETHER THEY 1) ARE NOT DEPENDENT ON A SINGLE CLOUD
PROVIDER; 2) HAVE A STATE MANAGEMENT; 3) USE A DECLARATIVE
CONFIGURATION LANGUAGE; 4) ARE AVAILABLE AS OPEN SOURCE.

PROVIDERS ARE BASED ON [27] WITH AT LEAST 10% USAGE.

IoC-Solution 1) 2) 3) 4)
AWS CloudFormation templates [29] ✓
Azure resource manager templates [30] ✓ ✓
Terraform [28] ✓ ✓ ✓ ✓
Google cloud deployment manager templates6 ✓ (✓)
Ansible [31] ✓ ✓
AWS systems manager 7

AWS OpsWorks [29] uses Chef / Puppet
Chef [32] ✓ (✓) (✓) ✓
Puppet [33] ✓ ✓ ✓ ✓

Now an IaC solution is chosen, our didactical requirements
(see Sec. III) can be addressed as following:

1) We need a system that allows us to build scenarios of
different sizes, ranging from single machine set-ups to
scenarios spanning multiple networks and machines.
Using IaC together with different cloud providers, we are
able to scale the scenarios to any size without having to
take hardware limits into consideration.

2) We want a system that students can experiment in
without the fear of breaking something. Deploying
learning scenarios in the cloud not only decouples them
from any local infrastructure (thus negating the risk to
the university), but most cloud providers allow restricting
network access to deployed machines (thus isolating the
scenario from the internet except a well-guarded gate-
way). In the event a student actually breaks a scenario,
IaC can then deploy a completely fresh instance of that
scenario with almost no work.

3) Both teaching and learning of all levels of Bloom’s
Taxonomy should be encouraged. While this is inde-
pendent of whether we use IaC, it has the consequence
that we actually need some sort of learning / teaching
environment which motivates both students to learn as
well as teachers to use the system.

4) Support students with different learning speeds: Using
IaC for students does not only allow students to work
through scenarios multiple times, it is easy to set-up lab-
oratories for different target skills so slower learners can
go through multiple scenarios if they wish. In theory, it is
also possibly to dynamically generate learning scenarios
according to students learning speeds and needs.

5) Support exercises for operational security. IaC can
support us here by allowing for automated set-ups where
such a connection is possible (e.g. automatically install
needed drivers and software to a virtual computer).
However, IaC alone is not enough here and future work
is needed to actually connect operational technology
(physical or virtual) to the laboratory.

6https://cloud.google.com/deployment-manager/v2beta1/templates
7https://aws.amazon.com/de/systems-manager/

V. USING ’INFRASTRUCTURE AS CODE’

In our laboratory, IaC allows us to model complex teaching
scenarios. Experts (not necessarily teachers) have to manually
design the teaching scenarios and write them down using the
domain-specific language HashiCorp Configuration Language
(HCL). The written scenarios are then added to the library of
our software tool.

Once our software tool knows a scenario, we can automat-
ically deploy that scenario to a cloud provider (in our case
Azure). This means that our software tool can create and
destroy scenarios based on demand without the need of any
manual set-up of the teacher. The laboratories usually take a
few minutes to start.

In those scenarios, the students can experiment freely with-
out having the fear of breaking equipment or otherwise getting
in trouble. Worst case, the current scenario gets deleted and
the student gets access to a new instance of the same scenario.
In addition, we can provide students with all necessary tools
preinstalled on a virtual computer in the scenario, so no
additional set-up by the students are needed.

This model also allows us to save costs: Instead of needing
to buy and maintain equipment for enough students, which is
most likely only needed a couple of times per year, we can
deploy and pay on an ’as needed’ basis.

A. Building Scenarios in Terraform

All scenarios are built as Terraform modules. This way,
a single scenario definition can be used to deploy multiple
instances. At the same time, new scenarios can be added by
simply adding a new module to the main Terraform file (see
Fig. 8 at the end of the paper). For this to work, a unified
interface has to be present across all modules.

All modules must have three input variables. The name and
the meaning of these variables is the same across all modules.
These variables are:

• ”id”: The unique id of one instance of the scenario.
This id must be used in every resource name (e.g.
use "scenario1-$var.id-public-ip" instead of
"scenario1-public-ip". Failing to comply with
the naming convention might lead to name clashes, which
has the consequence of different scenarios interfering
with each other.

• ”azure region” and ”azure rg”: These variables are
needed for modules to know which data centre they
should put their resources to. While these can theoret-
ically be set different for different modules, it still makes
sense to choose the best ones for you and keep them
consistent across all modules.

At the same time, we need some output variables in order to
provide students with all required information to access the
laboratory. These are the public IP, the user name as well as
the password to connect to the machine. With this interface in
place, we can now build a complete module.

An example scenario can look as follows: The input vari-
ables can be defined in a file variables.tf (see Fig. 6 at the

end of the paper) and the output variables in a file output.tf
(see Fig. 7 at the end of the paper). With that in place, we
can now write our actual scenario (see Fig. 9 at the end of the
paper):

1) We first define a local variable name to save a more elab-
orate name including the scenario name (here: example-
lab). While this is not strictly necessary, it helps with
later identification in Terraform.

2) We can then set up the network. This needs a virtual
network where we put all our machines in, at least one
subnetwork (can be more for larger scenarios), a public IP
which can be used by students to access the scenario and
a network interface for every distinct machine network
configuration (e.g. when a machine is on a different
subnet configuration, a different network interface is
needed).

3) We can use a random password Terraform resource
to generate the passwords students use to access the
scenario.

4) Finally, we set up the virtual machines. In this example
scenario, we only use one standard Ubuntu virtual ma-
chine. This machine’s network access is determined by
the network interface we assign to it.

Unfortunately, Terraform needs all modules to be joined
in a single root file (see Fig. 8 at the end of the paper).
Besides some set-up, this file contains a module resource as
well as an output variable for every scenario we define. We
now want to instantiate laboratories by just providing IDs
for laboratories to Terraform. To do this, we use different
Terraform functions. for_each and toset are used to map
the provided IDs to the modules to create multiple instances
of those laboratories. tomap is used to collect the output
variables of those instances. By doing it this way, we just
need to provide the state of laboratories we want to have at
the end and do not need to track which laboratories need to
be created or destroyed (which will be managed by Terraform
itself).

B. Creating Images for Virtual Machines

One of the challenges when creating scenarios is the set-up
of images for virtual machines, especially because many vir-
tual machines need manual set-up. We identified four possible
ways of using images in scenarios:

1) Use a pre-existing image. This is only possible when no
special set-up is needed, such as using Kali Linux8 as the
gateway machine.

2) Use a preexisting image and add a custom set-up
script. The set-up script can be used by adding
an azurerm_virtual_machine_extension
ressource containing the script (see Fig. 1 for an
example). This method is useful if only a few changes
have to be performed on a base image and the new
image is only used once.

8you can find this image at the Azure Marketplace at https://
azuremarketplace.microsoft.com/en/marketplace/apps/kali-linux.kali

3) Use the Azure Image Builder9. This method is best used
when a single custom image is used multiple times (pos-
sibly even over multiple scenarios). It can be combined
with 2) for increased flexibility.

4) Manually create the image and upload it to the Azure
Compute Gallery. This is the most manual work, but it
also allows the best way to customise the image. This
is needed if a very special set-up is needed (e.g. when
a specific software version with known vulnerabilities is
needed or when software needs to be configured in a
vulnerable way). Azure needs the image to be in the
Virtual Hard Disk (.vhd) format.

resource "azurerm_virtual_machine_extension" "vmext" {
name = "example-vmext"

virtual_machine_id = azurerm_linux_virtual_machine.example.id
publisher = "Microsoft.Azure.Extensions"
type = "CustomScript"
type_handler_version = "2.0"

protected_settings = <<PROT
{
"script": "${base64encode(file("set-up_script.sh"))}"

}
PROT
}

Fig. 1. Terraform code snippet to use a custom set-up script for a virtual
machine.

VI. STUDENTS’ & TEACHERS’ INTERFACE

To access the deployed learning scenarios, standard tools
for remote connections like SSH or RDP can be used. While
this provides rudimentary access, we aimed to have a system
that encourages learning and teaching instead of simply al-
lowing it (as discussed in Sec. III). We identified four major
requirements for our system:

A. Students should be guided through the learning scenario
when possible. Help text and self assessment questions
should be easily available at any point.

B. Feedback to the students should be given quickly. This is
important to us since no matter which learning theory is
used, timely feedback seems to be important [34].

C. The students should be able to access the learning sce-
narios independently of their location or end device. This
allows for greater flexibility by students.

D. Teachers should be able to track the progress of students.
This should help teachers to identify struggling students
and help them accordingly.

To fulfil all requirements, we decided to build a web applica-
tion. Using a web application allows students to use the system
independently of their location, device, or installed software
(requirement C.). To access the laboratory, students just need
a URL provided by the teachers10.

The students’ interface is split up into two parts (see Fig.
2 for the concept and 3 for an implementation): On the left

9https://learn.microsoft.com/en-us/azure/virtual-machines/
image-builder-overview

10The URL might be unique to each student or students might use the same
URL to access the same instance of the scenario

IT sec lab

https://www.it-sec.lab

Classroom Name - Laboratory Name

SSH console Exercise
Progress

Question 1

Question 2

Description

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et
accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata
sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam

NextBack

Yes
No
Maybe

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

Fig. 2. Mock-up of the students interface. The interface is divided into virtual
machine view (left) and task view (right).

Fig. 3. Students interface. The interface is divided into virtual machine view
using a VNC connection (left) and task view using a Moodle quiz (right).

side, students can access the learning scenario through the
gateway virtual machine. For now, access is granted through
SSH11 or VNC12. On the right side, teachers can provide both
instructions as well as self assessment questions to students
(requirement A.). These questions can also be used to provide
quick feedback whether tasks have been completed correctly
(requirement B.).

A teacher has two ways of tracking user progress: He can
either use standard tests of the learning platform (in our case
Moodle) or use a web portal (see Fig. 4) we developed.
Both solutions track the students progress based on answered
self assessment questions (requirement D.). In addition, both
solutions allow teachers to spot students who might have
difficulties and are thus behind. This way, teachers can help
those students and give appropriate feedback (requirement B.).

VII. EXAMPLE SCENARIO

In this example scenario, students have to perform a pen-
etration test [35] on a company network. This network has
a single public server. Students are tasked with accessing

11using webssh: https://github.com/huashengdun/webssh
12using noVNC: https://github.com/novnc/noVNC

Teachers view

https://www.it-sec.lab/teacher/Classroom Name

Classroom Name

Lab 1

Progress

show student solution

Lab 2

Progress

show student solution

Lab 3

Progress

show student solution

Delete classroom

Fig. 4. Mock-up of the teachers’ view. The progress of all stu-
dents/laboratories can be monitored.

secret company data on a server in the private network of
the company. A brief overview over the scenario can be seen
in Fig. 5.

In a first step, students must analyse the public server. By
doing a port scan [36], they find the two open ports 22 (SSH
server) and 8080 (HTTP server). They can access port 8080
and get a normal website. Using an SQL injection [37], they
get access to the usernames of all employees. The usernames
of the employees can then be used to brute force [36] attack
to get access to the SSH server. Now students have access to
the internal network.

In the second step, students must now scan the private
network. There, they find a second server. Using a port scan
on the newly discovered machine, they find an active Windows
file sharing / smb server (port 445). Using an old vulnerability
like EternalBlue [38], they get access to the server and with it
access to the secret data. This way, they can finish the scenario
successfully.

We can now evaluate the learning outcomes students can
achieve in this scenario by using Bloom’s Taxonomy. (see Sec.
III):

• Understand: Knowledge of the danger of exposing web-
sites to the internet.

• Understand: Knowledge of the danger of SQL injections
and how to test for them.

• Understand: Knowledge of the danger of weak authen-
tification methods (i.e. weak password) for SSH.

• Understand: Knowledge of how to access private net-
works.

• Understand: Knowledge of the danger of not installing
patches in a timely manner.

• Apply: Usage of the different tools involved (e.g. nmap
[39] for port scanning, metasploit [40] for EternalBlue

learning scenario deployed to cloud

student Gateway machine
through which students
can access the learning
scenario. All required
penetration testing

tools are already
preinstalled.

Company public webserver. A
webserver is on port 8080 which
can be used to get access to user

names (SQL injection). The
username can be used to get SSH
access (brute force). Can be used
to get access to private network.

Company private
server. Is located on

private network. Has a
Windows file sharing /
smb server that can be

exploited to access
secret data.

Fig. 5. Example scenario. Students have to gain access to a public server of a company. Using this server, they can access secret data on a server located in
a private network.

exploitation).

Depending on how the teacher uses the scenario in his teach-
ing, further learning outcomes higher on Bloom’s Taxonomy
can be achieved, e.g.:

• Analyse: The students can analyse where the problems of
the scenarios are and how to avoid them.

• Evaluate: The students can give an evaluation of the
overall security of the scenario.

• Create: Improvements of the presented systems in the
scenario can be discussed. It is also possible that students
should actually make the scenario more secure by fixing
the identified problems, although this might be harder and
more time consuming.

VIII. CONCLUSION AND OUTLOOK

This work mainly focuses on the technical and didactical
part of our new IT security laboratory. Based on Bloom’s
Taxonomy as our didactical concept, we were able to show
that ’Infrastructure as Code’ (IaC) seems like a good candidate
to build IT security laboratory. After comparing multiple IaC
solutions, we settled for Terraform to build our laboratory. We
show the technology behind our laboratory, our user interface
as well as an example scenario involving multiple virtual
machines.

The laboratory is fully operational at the moment. It is
planned to use the laboratory starting at the beginning of
2023. Accompanying the students at learning, we want to make
studies on how effective the new laboratory is for learning and
how complex scenarios can be used to improve IT security
teaching. Long term, we hope that we can make the laboratory
available to a wider audience.

Since operational security is an upcoming topic, we would
like to include scenarios containing different physical devices.
However, we have not yet explored how to add them into
our Terraform modules. This should be possible by providing

teaching scenarios containing virtual machines which are set-
up to connect to physical systems. We plan to include them by
connecting our laboratory into the CrossLab [41] infrastructure
in future research, which would allow us to connect to different
physical devices using a standardised protocol.

An other open topic is the creation of individual, automati-
cally generated learning scenarios. Such scenarios would allow
us to better adress the needs of individual students and thus
help them improve their knowledge about IT security. While
IaC has the capability to realise this, it is not yet implemented
into our system and might be an interesting topic for future
research.

REFERENCES

[1] Gesellschaft für Informatik e.V., “Empfehlungen für Bachelor- und Mas-
terprogramme im Studienfach Informatik an Hochschulen (Juli 2016),”
2016.

[2] The Joint Task Force on Computing Curricula, Association for Comput-
ing Machinery (ACM), and IEEE Computer Society, Computer Science
Curricula 2013 - Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, New York, NY, USA, 2013.

[3] Joint Task Force on Cybersecurity Education, Cybersecurity Curricula
2017: Curriculum Guidelines for Post-Secondary Degree Programs in
Cybersecurity. New York, NY, USA: Association for Computing
Machinery, 2017.

[4] F. L. Forcino, “The Importance of a Laboratory Section on Student
Learning Outcomes in a University Introductory Earth Science Course,”
Journal of Geoscience Education, vol. 61, no. 2, p. 213–221, 2013.
[Online]. Available: https://doi.org/10.5408/12-412.1

[5] L. D. Feisel and A. J. Rosa, “The Role of the Laboratory
in Undergraduate Engineering Education,” Journal of Engineering
Education, vol. 94, no. 1, p. 121–130, 2005. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/j.2168-9830.2005.tb00833.x

[6] M. Soll and K. Boettcher, “Expected learning outcomes by industry
for laboratories at universities,” in 2022 IEEE German Education
Conference (GeCon), 2022, pp. 1–6.

[7] R. S. Dewar, “Cybersecurity and cyberdefense exercises,” ETH Zurich,
Tech. Rep., 2018. [Online]. Available: http://hdl.handle.net/20.500.
11850/314593

[8] B. C. Ervural and B. Ervural, Overview of Cyber Security in the Industry
4.0 Era. Cham: Springer International Publishing, 2018, p. 267–284.
[Online]. Available: https://doi.org/10.1007/978-3-319-57870-5 16

[9] M. Baezner and P. Robin, “Stuxnet,” ETH Zurich, Tech. Rep., 2017.
[Online]. Available: http://hdl.handle.net/20.500.11850/200661

[10] L. Topham, K. Kifayat, Y. Younis, Q. Shi, and B. Askwith, “Cyber
Security Teaching and Learning Laboratories: A Survey,” Information
& Security: An International Journal, vol. 35, no. 1, pp. 51–80, 2016.

[11] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption,
support, and challenges of infrastructure-as-code: Insights from indus-
try,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 580–589.

[12] Y. Deng, D. Huang, and C.-J. Chung, “Thoth lab: A personalized
learning framework for cs hands-on projects (abstract only),” in
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, ser. SIGCSE ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 706. [Online].
Available: https://doi.org/10.1145/3017680.3022442

[13] J.-F. Lalande, V. Viet Triem Tong, P. Graux, G. Hiet, W. Mazurczyk,
H. Chaoui, and P. Berthomé, “Teaching android mobile security,” in
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 232–238. [Online].
Available: https://doi.org/10.1145/3287324.3287406

[14] C. M. B. Turner and C. F. Turner, “Analyzing the impact of experiential
pedagogy in teaching socio-cybersecurity: Cybersecurity across the
curriculum,” Journal of Computing Sciences in Colleges, vol. 34, no. 5,
p. 12–22, apr 2019.

[15] X. Mountrouidou, “Cyberpaths,” Journal of Computing Sciences in
Colleges, vol. 34, no. 3, p. 16, jan 2019.

[16] A. Konak, “Experiential learning builds cybersecurity self-efficacy
in k-12 students,” Journal of Cybersecurity Education, Research
and Practice, vol. 2018, no. 1, 2018. [Online]. Available: https:
//digitalcommons.kennesaw.edu/jcerp/vol2018/iss1/6

[17] M. Knöchel, S. Karius, and S. Wefel, “Developing a web-based training
platform for it security education,” in DELFI 2021, A. Kienle, A. Harrer,
J. M. Haake, and A. Lingnau, Eds. Bonn: Gesellschaft für Informatik
e.V., 2021, pp. 223–228.

[18] M. F. Thompson and C. E. Irvine, “Individualizing cybersecurity lab
exercises with labtainers,” IEEE Security & Privacy, vol. 16, no. 2, pp.
91–95, 2018.

[19] N. Eliot, D. Kendall, and M. Brockway, “A flexible laboratory en-
vironment supporting honeypot deployment for teaching real-world
cybersecurity skills,” IEEE Access, vol. 6, pp. 34 884–34 895, 2018.

[20] K. M. Kapp, The Gamification of Learning and Instruction: Game-Based
Methods and Strategies for Training and Education, 1st ed. Pfeiffer &
Company, 2012.

[21] D. Kennedy, Writing and Using Learning Outcomes: A Practical Guide.
Quality Promotion Unit, University College Cork, 2007.

[22] D. R. Krathwohl, “A revision of bloom’s taxonomy: An overview,”
Theory Into Practice, vol. 41, no. 4, pp. 212–218, 2002. [Online].
Available: https://doi.org/10.1207/s15430421tip4104 2

[23] E. Kaya and A. Yıldırım, “Science anxiety among failing students,”
Elementary Education Online, p. 518–525, 2014.

[24] E. Ural, “The effect of guided-inquiry laboratory experiments on
science education students’ chemistry laboratory attitudes, anxiety
and achievement,” Journal of Education and Training Studies,
vol. 4, no. 4, p. 217–227, 2016. [Online]. Available: https:
//eric.ed.gov/?id=EJ1095156

[25] P. Rouhani, “The role of time in self-directed personalized learning
environments: An exploratory analysis,” Ph.D. dissertation, 2019.
[Online]. Available: https://dash.harvard.edu/handle/1/42081520

[26] K. Morris, Infrastructure as Code, 2nd ed. Sebastopol, CA: O’Reilly
Media, Inc., 2020.

[27] Scribd and F. Software, “Usage of cloud configuration
tools worldwide in 2022, current and planned,” Statista,
2022. [Online]. Available: https://www.statista.com/statistics/511293/
worldwide-survey-cloud-devops-tools

[28] Y. Brikman, Terraform: Up & Running, 2nd ed. O’Reilly Media, Inc.,
2019.

[29] Amazon Web Services, Inc., “Overview of deployment options
on aws,” Tech. Rep., 2022, last Accessed:. 24.11.2022 15:07.
[Online]. Available: https://docs.aws.amazon.com/whitepapers/latest/
overview-deployment-options/welcome.html

[30] D. Rendón, Building Applications with Azure Resource Manager
(ARM): Leverage IaC to Vastly Improve the Life Cycle of Your
Applications. Berkeley, CA: Apress, 2022. [Online]. Available:
https://link.springer.com/10.1007/978-1-4842-7747-8

[31] M. Heap, Ansible. Berkeley, CA: Apress, 2016. [Online]. Available:
http://link.springer.com/10.1007/978-1-4842-1659-0

[32] M. Marschall, Chef Infrastructure Automation Cookbook. Packt Pub-
lishing, 2013.

[33] S. Pandya and R. Guha Thakurta, Hands-on Infrastructure as Code
with Puppet. Berkeley, CA: Apress, 2022, pp. 135–163. [Online].
Available: https://doi.org/10.1007/978-1-4842-8689-0 7

[34] M. Thurlings, M. Vermeulen, T. Bastiaens, and S. Stijnen,
“Understanding feedback: A learning theory perspective,” Educational
Research Review, vol. 9, pp. 1–15, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1747938X12000656

[35] M. Bishop, “About Penetration Testing,” IEEE Security Privacy, vol. 5,
no. 6, p. 84–87, 2007.

[36] S. Shirey, “Internet security glossary,” RFC 2828, 2000. [Online].
Available: https://www.ietf.org/rfc/rfc2828.txt

[37] A. Sadeghian, M. Zamani, and S. M. Abdullah, “A taxonomy of sql
injection attacks,” in 2013 International Conference on Informatics and
Creative Multimedia, 2013, pp. 269–273.

[38] S. B. Wicker, “The ethics of zero-day exploits—: The nsa meets the
trolley car,” Commun. ACM, vol. 64, no. 1, p. 97–103, 2020. [Online].
Available: https://doi.org/10.1145/3393670

[39] G. Lyon, Nmap Network Scanning - The Official Nmap Project Guide
to Network Discovery and Security Scanning. Nmap Software LLC,
2022. [Online]. Available: https://nmap.org/book

[40] S. Raj and N. K. Walia, “A study on metasploit framework: A pen-testing
tool,” in 2020 International Conference on Computational Performance
Evaluation (ComPE), 2020, pp. 296–302.

[41] I. Aubel, S. Zug, A. Dietrich, J. Nau, K. Henke, P. Helbing, D. Stre-
itferdt, C. Terkowsky, K. Boettcher, T. R. Ortelt, M. Schade, N. Kock-
mann, T. Haertel, U. Wilkesmann, M. Finck, J. Haase, F. Herrmann,
L. Kobras, B. Meussen, M. Soll, and D. Versick, “Adaptable digital labs
- motivation and vision of the crosslab project,” in 2022 IEEE German
Education Conference (GeCon). Berlin, Germany: IEEE, Aug 2022.

APPENDIX
EXAMPLE TERRAFORM FILES FOR A BASIC SCENARIO

CONTAINING A SINGLE UBUNTU VM

variable "id" {
type = string

}

variable "azure_region" {
type = string

}

variable "azure_rg" {
type = string

}

Fig. 6. Input variables of each scenario. Saved as file modules/example-
scenario/variables.tf.

output "vm_public_ip" {
value = azurerm_linux_virtual_machine.example.public_ip_address

}

output "vm_user" {
value = azurerm_linux_virtual_machine.example.admin_username

}

output "vm_password" {
value = azurerm_linux_virtual_machine.example.admin_password

}

Fig. 7. Output variables of each scenario. Here, values are taken from
the Azure-VM with the identifier ’example’. Saved as file modules/example-
scenario/output.tf.

terraform {
required_version = ">= 1.2.5"

required_providers {
azurerm = {

source = "hashicorp/azurerm"
version = "3.24.0"

}
random = {

source = "hashicorp/random"
version = "3.4.3"

}
}

backend "http" {}
}

provider "azurerm" {
features {}

}

resource "azurerm_resource_group" "scenario_rg" {
name = var.ressource_group
location = var.azure_region

}

module "example_scenario" {
source = "./modules/example-scenario"

for_each = toset(var.example_scenario_ids)

id = each.key
azure_rg = azurerm_resource_group.scenario_rg.name
azure_region = var.azure_region

}

output "example_scenario_public_ip" {
value = tomap({

for key, service in module.example_scenario : key => service.vm_public_ip
})

}

output "example_scenario_username" {
value = tomap({

for key, service in module.example_scenario : key => service.vm_user
})

}

output "example_scenario_password" {
value = tomap({

for key, service in module.example_scenario : key => service.vm_password
})
sensitive = true

}

Fig. 8. Main Terraform file containing all modules. Saved as main.tf.

locals {
name = "example-lab-${var.id}"

}

resource "azurerm_virtual_network" "network" {
name = "${local.name}-network"
location = var.azure_region
resource_group_name = var.azure_rg
address_space = ["10.0.0.0/16"]

tags = {
exampleLabId = local.name

}
}

resource "azurerm_subnet" "subnetwork" {
name = "${local.name}-subnet"
resource_group_name = var.azure_rg
virtual_network_name = azurerm_virtual_network.network.name
address_prefixes = ["10.0.0.0/24"]

}

resource "azurerm_public_ip" "public_ip" {
name = "${local.name}-public-ip"
location = var.azure_region
resource_group_name = var.azure_rg
allocation_method = "Dynamic"
idle_timeout_in_minutes = 4

tags = {
exampleLabId = local.name

}
}

resource "azurerm_network_interface" "nic" {
name = "${local.name}-nic"
location = var.azure_region
resource_group_name = var.azure_rg

ip_configuration {
name = "${local.name}-ipconfig"
subnet_id = azurerm_subnet.subnetwork.id
public_ip_address_id = azurerm_public_ip.public_ip.id
private_ip_address_allocation = "Dynamic"

}

tags = {
exampleLabId = local.name

}
}

resource "random_password" "password" {
length = 16
special = false
min_lower = 1
min_numeric = 1
min_upper = 1

}

resource "azurerm_linux_virtual_machine" "example" {
name = "${local.name}-vm"
resource_group_name = var.azure_rg
location = var.azure_region
size = "Standard_B1ls"
admin_username = "adminuser"
admin_password = random_password.password.result
disable_password_authentication = false
network_interface_ids = [
azurerm_network_interface.nic.id,

]

os_disk {
caching = "ReadWrite"
storage_account_type = "Standard_LRS"
name = "${local.name}-vm-disk"

}

source_image_reference {
publisher = "Canonical"
offer = "0001-com-ubuntu-server-jammy"
sku = "22_04-lts-gen2"
version = "latest"

}

tags = {
exampleLabId = local.name

}
}

Fig. 9. Example scenario containing a single Ubuntu VM. Saved as file
modules/example-scenario/main.tf.

